Phase-plane analysis of gaze stabilization to high acceleration head thrusts: a continuum across normal subjects and patients with loss of vestibular function.
نویسندگان
چکیده
We investigated the vestibulo-ocular reflex (VOR) during high-acceleration, yaw-axis, head rotations in 12 normals and 15 patients with vestibular loss [7 unilateral vestibular deficient (UVD) and 8 bilateral vestibular deficient (BVD)]. We analyzed gaze stabilization within a 200-ms window after head rotation began, using phase planes, which allowed simultaneous analysis of gaze velocity and gaze position. These "gaze planes" revealed critical dynamic information not easily gleaned from traditional gain measurements. We found linear relationships between peak gaze-velocity and peak gaze-position error when normalized to peak head speed and position, respectively. Values fell on a continuum, increasing from normals, to normals tested with very high acceleration (VHA = 10,000-20,000 degrees/s2), to UVD patients during rotations toward the intact side, to UVD patients during rotations toward the lesioned side, to BVD patients. We classified compensatory gaze corrections as gaze-position corrections (GPCs) or gaze-velocity error corrections (GVCs). We defined patients as better-compensated when the value of their end gaze position was low relative to peak gaze position. In the gaze plane this criterion corresponded to relatively stereotyped patterns over many rotations, and appearance of high velocity (100-400 degrees/s) GPCs in the gaze plane ending quadrant (150-200 ms after head movement onset). In less-compensated patients, and normals at VHA, more GVCs were generated, and GPCs were generated only after gaze-velocity error was minimized. These findings suggest that challenges to compensatory vestibular function can be from vestibular deficiency or novel stimuli not previously experienced. Similar patterns of challenge and compensation were observed in both patients with vestibular loss and normal subjects.
منابع مشابه
FINAL ACCEPTED VERSION Phase-plane analysis of gaze stabilization to high acceleration head thrusts– a continuum across normal subjects and patients with loss of vestibular function
We investigated the vestibulo-ocular reflex (VOR) during high-acceleration, yaw-axis, head rotations in 12 normals and 15 patients with vestibular loss (7 unilateral (UVD) and 8 bilateral (BVD)). We analyzed gaze stabilization within a 200ms window after head rotation began, using phase planes, which allowed simultaneous analysis of gaze velocity and gaze position. These 'gaze planes' revealed ...
متن کاملEffects of vestibular loss on head stabilization in response to head and body perturbations.
Control of head position during postural responses is important to facilitate both the interpretation of vestibular signals and the stabilization of gaze. In these experiments, we compared head stabilization for two different postural tasks: 1) in response to perturbations at the head, and 2) in response to perturbations induced at the support surface, which perturb both body and head position....
متن کاملOcular Motor Function in Patients with Bilateral Vestibular Weakness
Introduction: Patients with bilateral weakness (BW) have many difficulties in gaze stability that interfere with their normal function. The aim of this study was to evaluate ocular motor functions in patients with BW to better understand the problem of gaze instability in these patients. Materials and Methods: Patients were referred from the Otolaryngology Department for Vestibular Assessmen...
متن کاملIdentifying head-trunk and lower limb contributions to gaze stabilization during locomotion.
The goal of the present study was to determine how the multiple, interdependent full-body sensorimotor subsystems respond to a change in gaze stabilization task constraints during locomotion. Nine subjects performed two gaze stabilization tasks while walking at 6.4 km/hr on a motorized treadmill: 1) focusing on a central point target; 2) reading numeral characters; both presented at 2 m in fron...
متن کاملVestibular Evoked Myogenic Potential Produced by Bone-Conducted Stimuli: A Study on its Basics and Clinical Applications in Patients With Conductive and Sensorineural Hearing Loss and a Group With Vestibular Schawannoma
Introduction: Vestibular evoked myogenic potential (VEMP) has recently been broadly studied in vestibular disorders. As it is evoked by loud sound stimulation, even mild conductive hearing loss may affect VEMP results. Bone-conducted (BC) stimulus is an alternative stimulation for evoking this response. This study aims to assess the characteristics of BC-VEMP in different groups of patients. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 91 4 شماره
صفحات -
تاریخ انتشار 2004